POJ3259 - Wormholes(连通图判断负环)

题目链接;

http://poj.org/problem?id=3259


题目大意:

给出N个图,每个图有两种边,一个是无向的正权边,一种是有向的负权边,保证所给的图为连通图,求是否存在负环。


解题过程:

刚开始以为给出的图不连通,然后用Floyd超时,后来问了学长,翻了下POJ的讨论,发现大家都是默认为图连通做的……

然后敲了下Bellman和SPFA判断负环就A了。


题目分析:

因为保证图联通,那么可以假设从任意一点出发。

Bellman:如果松弛操进行N次依然可以松弛,那么存在负环。
SPFA:如果一个点入队次数大于等于N次,那么处在负环。


AC代码:

Bellman:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#include <cstdio>
#include <cstring>
using namespace std;

typedef long long LL;

struct Node {
int u, v, w;
}edge[2500*10];

LL dist[1123];

int main() {
int f;
scanf("%d", &f);
while (f--) {
int n, m, w;
scanf("%d %d %d", &n, &m, &w);
for (int i = 0; i < m; i++) {
int u, v, c;
scanf("%d %d %d", &u, &v, &c);
edge[i*2] = {u, v, c};
edge[i*2+1] = {v, u, c};
}
m *= 2;
for (int i = 0; i < w; i++) {
int u, v, c;
scanf("%d %d %d", &u, &v, &c);
edge[i+m] = {u, v, -c};
}

bool flag = false;
memset(dist, 0x3f, sizeof(dist));
dist[1] = 0;
for (int k = 0; k <= n; k++) {
for (int j = 0; j < m + w; j++) {
int u = edge[j].u;
int v = edge[j].v;
int w = edge[j].w;
if (dist[v] > dist[u] + w) {
if (k == n)
flag = true;
dist[v] = dist[u] + w;
}
}
}


if (flag)
printf("YES\n");
else
printf("NO\n");
}
}

SPFA:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;

typedef long long LL;


vector<pair<int, int> > edge[1123];
int dist[1123], cnt[1123];
bool vis[1123];

int main() {
int f;
scanf("%d", &f);
while (f--) {
int n, m, w;
scanf("%d %d %d", &n, &m, &w);
for (int i = 0; i <= n; i++) {
edge[i].clear();
}
for (int i = 0; i < m; i++) {
int u, v, c;
scanf("%d %d %d", &u, &v, &c);
edge[u].push_back(make_pair(v, c));
edge[v].push_back(make_pair(u, c));
}
for (int i = 0; i < w; i++) {
int u, v, c;
scanf("%d %d %d", &u, &v, &c);
edge[u].push_back(make_pair(v, -c));
}

bool flag = false;
memset(dist, 0x3f, sizeof(dist));
memset(cnt, 0, sizeof(cnt));
queue<int> q;
q.push(1);
dist[1] = 0;
vis[1] = true;

while (!q.empty()) {
int u = q.front();
for (int i = 0; i < edge[u].size(); i++) {
int v = edge[u][i].first;
int w = edge[u][i].second;
if (dist[v] > dist[u] + w) {
dist[v] = dist[u] + w;
if (++cnt[v] >= n) {
flag = true;
break;
}
if (!vis[v]) {
q.push(v);
}
}
}
q.pop();
vis[u] = false;
}

if (flag)
printf("YES\n");
else
printf("NO\n");
}
}