社交网络图中结点的“重要性“计算(Dijkstra + SPFA + Floyd + 模板)

题目链接:

题目大意:

求一个点到其他所有点的最短距离和,保证图连通。

解题过程:

刚开始用 Floyd 水过的,后来用换了几种方法,不错的模板题,Floyd 的时候,要用 vector 存边,否则超内存。


题目分析


AC代码(Dijkstra + SPFA)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#include<bits/stdc++.h>
using namespace std;

const int MAX = 11234, INF = 0x3f3f3f3f;

vector<int> edges[MAX];
int dist[MAX], book[MAX];

void spfa(int s) {
memset(dist, INF, sizeof(dist));
memset(book, 0, sizeof(book));

queue<int> q;
q.push(s);
book[s] = 1;
dist[s] = 0;

while (!q.empty()) {
int u = q.front();
for (int i = 0; i < edges[u].size(); i++) {
int v = edges[u][i];
if (dist[v] > dist[u] + 1) {
dist[v] = dist[u] + 1;
if (!book[v]) {
q.push(v);
book[v] = 1;
}
}
}
q.pop();
book[u] = 0;
}
}

void dijkstra(int s) {
memset(dist, INF, sizeof(dist));
priority_queue<pair<int, int> > q;
dist[s] = 0;
q.push(make_pair(-dist[s], s));
while (!q.empty()) {
int u = q.top().second;
q.pop();

for (int i = 0; i < edges[u].size(); i++) {
int v = edges[u][i];
if (dist[v] > dist[u] + 1) {
dist[v] = dist[u] + 1;
q.push(make_pair(-dist[v], v));
}
}
}
}

int main() {
int n, m;
scanf("%d %d", &n, &m);
while (m--) {
int u, v;
scanf("%d %d", &u, &v);
edges[u].push_back(v);
edges[v].push_back(u);
}
int k;
scanf("%d", &k);
while (k--) {
int s;
scanf("%d", &s);
dijkstra(s);
int sum = 0;
for (int i = 1; i <= n; i++) {
if (i == s)
continue;
sum += dist[i];
}
printf("Cc(%d)=%.2f\n", s, (n-1.0)/sum);
}
}

AC代码(Floyd):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#include<bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f, MAX = 10001;

int main()
{
vector<int>edge[MAX];
int n, m;
scanf("%d %d", &n, &m);

for (int i = 0; i <= n; i++) {
for (int j = 0; j <= n; j++) {
edge[i].push_back(INF);
}
}

for (int i = 1; i <= n; i++) {
edge[i][i] = 0;
}

for (int i = 0; i < m; i++) {
int u, v;
scanf("%d %d", &u, &v);
edge[u][v] = edge[v][u] = 1;
}

for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (edge[i][j] > edge[i][k] + edge[k][j])
edge[i][j] = edge[i][k] + edge[k][j];
}
}
}

int k;
scanf("%d", &k);
while (k--) {
int c;
scanf("%d", &c);
double sum = 0;
for (int i = 1; i <= n; i++) {
if (i == c)
continue;
sum += edge[c][i];
}
printf("Cc(%d)=%.2f\n", c, (n-1)/sum);
}
}