UVA - 11212 Editing a Book(迭代加深搜索 IDA* + 模板)

题目链接


https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2153

题目大意


给定一个长度 1 ~ 9 的整数序列,每个整数 1 ~ 9 。

序列是无序的,你有两种操作,剪切和粘贴,两种操作均可以处理任意长度。

求至少经过多少次操作,可以使序列有序(递增)。

解题过程


本来感觉处理数组比较麻烦,每次都要开辟空间传递指针,然后赋值。

看了一个博客,可以用 string 类处理,然后感觉有现成的类,比手动辅助数组方便太多!!!

本题可以做一个迭代加深搜索的模板。

题目分析


迭代加深搜索(IDA*):

  • 适用范围:可用回溯法,但解答树没有明显上限的问题。
  • 从 0 开始枚举最大迭代深度,然后使用函数迭代求解,如果在当前最大迭代深度下有解,即是答案(处理最少步骤等问题)。
  • 切记,迭代加深搜索,解答树节点一般比较多,尽可能考虑剪枝。
  • 核心代码
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    for (maxd = 0; ; maxd++)
    {
    if (solve(0))
    break;
    }

    bool solve(int d)
    {
    if (d == maxd)
    return judge();

    if (solve(d+1))
    return true;

    return false;
    }

另外强调下 string 的 substr 方法。
substr(pos, len);
从 pos 开始, len 长度的子串,如果忽略 len ,则一直到结尾。

AC代码


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#include<bits/stdc++.h>
using namespace std;

int n, step, maxd;

string goal;

bool solve(int d, string now)
{
if (d == maxd)
{
step = d;
return now == goal;
}

int h = 0;
for (int i = 0; i < n - 1; i++)
if (now[i+1] - now[i] != 1)
h++;

if (h > 3 * (maxd - d))
return false;

for (int l = 0; l < n; l++)
{
for (int r = l; r < n; r++)
{
string slt = now.substr(l, r-l+1);
string tail = now.substr(r+1);
for (int k = 0; k < l; k++)
{
string il = now.substr(0, k);
string ir = now.substr(k, l-k);
if (solve(d+1, il+slt+ir+tail))
return true;
}
}
}
return false;
}

int main()
{
int testCase = 0;
while (~scanf("%d", &n) && n)
{
string data;
for (int i = 0; i < n; i++)
{
int t;
scanf("%d", &t);
data += (char) t + '0';
}

goal = "";
for (int i = '1'; i <= '0'+n; i++)
goal += i;

for (maxd = 0; maxd < n; maxd++)
if (solve(0, data))
{
printf("Case %d: %d\n", ++testCase, maxd);
break;
}
}
}